5.3 Use Angle Bisectors of Triangles

Before You used angle bisectors to find angle relationships.

Now You will use angle bisectors to find distance relationships. Why? So you can apply geometry in sports, as in Example 2.

Angle bisector - A ray that divides an angle into two congruent a angles.

DISTANCE from a POINT to a LINE - Is the length of the _ segment from the point to the line.

Example 1 Use the Angle Bisector Theorems

Find the measure of $\angle GFJ$

Example 2 Solve a Real-World Problem

SOCCER A soccer goalie's position relative to the ball and goalposts forms congruent angles, as shown. Will the goalie have to move farther to block a shot toward the right goalpost R or the left goalpost L?

Example 3 Use Algebra to Solve a Problem

For what value of x does P lie on the bisector of $\angle A$

In Exercises 1–3, find the value of x.

1.

4. Do you have enough information to conclude that \overline{QS} bisects $\angle PQR$? Explain.

For Your Notebook THEOREM

THEOREM 5.7 Concurrency of Angle Bisectors of a Triangle

The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.

If \overline{AP} , \overline{BP} , and \overline{CP} are angle bisectors of $\triangle ABC$, then PD = PE = PF.

Incenter - Point of Concurrency of the three _ of a triangle.

Example 4 Use the Concurrency of Angle Bisectors

In the diagram, N is the INCENTER of $\triangle ABC$. Find ND.

Suppose you are not given AF or AN, but you are given that BF = 12 and BN = 13. Find ND.